Řešená cvičení

Limita s logaritmem

Vysoká škola • 3 min

Vyppočítejte:

\(\displaystyle \underset{x\rightarrow0}{\lim}\frac{\ln x^2}{x^3}\)

Limita s absolutní hodnotou

Vysoká škola • 6 min

Vypočitejte:

\(1)\;\displaystyle \underset{x\rightarrow3}{\lim}\frac {|3-x|}{x-3}\\2)\;\displaystyle \underset{x\rightarrow \frac{\pi}{2}}{\lim}\frac{x}{\cos x}\)

Jednostranné limity

Vysoká škola • 3 min

Vypočítejte:

\(1)\;\displaystyle \underset{x\rightarrow4^+}{\lim}\frac{3x-1}{x-4}\\2)\;\displaystyle \underset{x\rightarrow4^-}{\lim}\frac{3x-1}{x-4}\\3)\;\displaystyle \underset{x\rightarrow0^-}{\lim}\frac{x^2-2}{x^2}\\4)\;\displaystyle \underset{x\rightarrow3^+}{\lim}\frac5{\left(3-x\right)^3}\)

Všechny příklady (10)

Testy

-%

Výpočet jednostranných limit

Střední škola • 3 min

-%

Definice -%

Počítání -%

Počítání -%

Jednostranné limity

Vysoká škola • 15 min

-%

Limita -%

Limita -%

Limita -%

Limita -%

Absolutní hodnota -%

Podrobnosti o látce

Celkové hodnocení

99%33 hodnotících

Tvé hodnocení

Pro hodnocení se musíte přihlásit

Autor videa
avatar

Dominik Chládek
Autor matematiky na isibalu :)

Klíčová slova

Vysoká škola

Odhadovaná délka studia

1 h 12 min

Komentáře

avatar

Peter Palček 05. 01. 2022 • 12:31

Dobrý deň,
ako by to bolo s limitou sprava :  \(\lim\limits_{x \to 0 } {ln(x^2 +1) \over x^2}\) ?

Ďakujem. 
 

sub comment
avatar

Dominik Chládek 05. 01. 2022 • 22:21

To není limita nenulové číslo/nula, to můžete třeba L'Hospitalem :)

avatar

Dominika Musilová 20. 04. 2021 • 15:33

Dobrý den, možná dokonce i díky vám udělám zkoušky z matematiky na ekonomické vysoké škole. :)

Děkuji, obdivuji vás !

sub comment
avatar

Dominik Chládek 20. 04. 2021 • 16:40

Dobrý den,

moc Vám děkuji za pochvalu! Vážím si těch krásný slov a držím palce, ať úspěšně bojujete! :)

avatar

Mandak upraveno: 14. 04. 2019 • 20:29

Možná bych nepsal tu definici, že pro záporné hodnoty x vrací absolutní hodnota -x (vrací opačné znaménko).. Chvilku mě to mátlo při dosazování v limitě.. Jednodušší je si říct, že jakékoliv znaménko v absolutní hodnotě se mění na kladné a s tím pak pracovat :) Ale mohl to být jen můj problém :) Jinak super video.. krásně vysvětlené a srozumitelné :)

sub comment
avatar

Dominik Chládek 15. 04. 2019 • 22:58

No, právě se takto ta definice používá pro praktické výpočty. Musíte si jen zvyknout na to, že:

\(|3|=3\\ |-3|=-(-3)=3\)

a pak, jak si zvyknete, tak zjistíte že je to vševypovídající definice. Tedy alespoň podle mého, ale tak to je asi věc každého člověka, v tom nemá nikdo a všichni pravdu :) 

Jinak moc děkuji!

avatar

Dominik Chládek 15. 09. 2017 • 20:00

Dobrý den, jde právě o limitní přístup, použijte stejný argument, jako při obhájení limity:

\(\displaystyle \lim_{x\rightarrow\infty}\frac1x=0\)

tam také vždy dělíte čím dál vyšším číslem a máte jako výsledky konkrétní čísla, ale intuice napovídá, že čím vyšší hodnota jmenovatele bude, tím menší hodnotu získáme :) pomůže Vám to takto?

avatar

AndrejBpB 14. 09. 2017 • 21:10

Dalo by sa vysvetliť nejak inak, prečo v čase 5:35h - limita zľava vyšla mínu nekonečno? Vôbec tomu nerozumiem, ako sme na to prišli. Ak delím číslo 5 nejakým veľmi malým číslom, tak dostanem nejaké veľmi veľké číslo, ale domnievam sa že konkrétne.

Přihlásit se pro komentář