Předpoklady NESPLNĚNY
V čase 2:24 má být intervál zapsal jako \(x \in (a- \delta;a) \cup (a;a+ \delta)\). Omlouvám se za chybu!
V čase 2:24 má být intervál zapsal jako \(x \in (a- \delta;a) \cup (a;a+ \delta)\). Omlouvám se za chybu!
Zatím nejsou řešené příklady ...
splněno - %
Obtížnost: SŠ | Délka řešení: 2 min
Celkové hodnocení (22 hodnotící)
Tvé hodnocení (nehodnoceno)
Pro hodnocení musíte být přihlášen(a)
Autor videa
Dominik Chládek
Obtížnost: VŠ
Jan Kubica
22. 07. 2020 - 11:51
Dobrý den, zajímalo by mě proč, když na začátku definujeme poloměr ε a tedy získáme pás, kam nám musí padat funkční hodnoty, tak krajní body toho intervalu (A + ε; A - ε) tam nepatří. Když bych tedy řekl, že ten pás f(x) náleží intervalu <A + ε; A - ε> (|y-A|< nebo = ε), tak bych ve Vašem konkrétním případě ani nemusel zužovat okolí bodu a (a=1) při zmenšení ε na 1/2, protože by mi hodnoty spadly do intervalu a tím pádem by vyhovovaly definici. Co nebo kdo určuje, že interval je s kulatou závorkou tedy |y - A|<ε a ne |y - A| < nebo = ε. Je to sice stupidní otázka, ale i tak bych byl rád za odpověď :)
Dominik Chládek
22. 07. 2020 - 14:16
Dobrý den, to je celkem zajímavá otázka, není vůbec stupidní! :) ten důvod je, že u limit v definici chceme mít v intervalech čísla, která budou vždy menší než nějaký konkrétní poloměr, tedy nechcete mít přesnou vzdálenost \(\epsilon\), ale mít vzdálenost menší než \(\epsilon\) od Vašeho odhadovaného bodu jako výsledek limity. Tím, že bude interval otevřený a přesnou vzdálenost vyřadíte a berete tu menší tak Vás to espilon bude menší volbou stále tlačit blíže a blíže k Vaší limitě a stále to tahat níže.
Já si to představuji tak, že při volbě \(\epsilon >0 \) se díky volbě oteřeného intervalu v podstatě můžeme dostat skutečně hodně blízko, téměř až do bodu, kdežto když bychom měli uzavřený interval, tak bychom měli vždycky nějakou kladnou vzdálenost \(\epsilon\) od bodu a ten \(\epsilon\) by to netlačil tak blízko.
Ale to je v podstatě hlavně moje představivost, teď si neumím představit, jestli by uzavření závorek vedlo k nějakým teoretickým problémů v těch tvrzeních. Vše to za mě stojí na tom, že chceme ...vzdálenost menší než \(\epsilon\)... a proto otevřený interval :)
Nikolas Šťastný
06. 06. 2019 - 17:34
Vo výpiskoch je nevlastná limita
Matěj Vtípil
06. 10. 2020 - 19:33
Dobrý den,
mohlo by to být i naopak? Tzn. že by nám někdo zadával to okolí delta?
Není mi to úplně jasné, budu rád za odpověď. Děkuji.