Video řešené příklady

Negace výroku

Obtížnost: SŠ | Délka řešení: 5 min

Znegujte výroky:

1) Rovnice \(|x|=4\) má v reálných číselch právě 3 řešení.

2) Rovnice \((x-1)(x+1)=0\) má v reálných číselch alespoň 2 řešení.


Negace výroku

Obtížnost: SŠ | Délka řešení: 5 min

Znegujte výroky:

1) Ráno nepůjdu na hřiště.

2) Přímka \(y=x+1\) neprochází bodem \([1;0]\).

3) Reálné číslo \(\sqrt3\) je iracionální.


Negace výroku

Obtížnost: SŠ | Délka řešení: 2 min

Znegujte výroky:

1) Alespoň 12 čísel je kladných.

2) Číslo -3 je kladné.


Všechny příklady (8)

Testy splněno na -%

Negace výroku

splněno - %

Obtížnost: SŠ | Délka řešení: 8 min

  • Podmínky negace výroku -%
  • Záznam negace výroku -%
  • Negace výroku -%
  • Negace výroku -%
  • Negace výroku -%
  • Negace výroku -%
  • Negace výroku -%


Negování

splněno - %

Obtížnost: SŠ | Délka řešení: 10 min

  • Výrok -%
  • Výrok -%
  • Výrok -%


Klíčová slova

Výrok | Negace | Pravdivost

Podrobnosti o látce

Výpisky ke stažení

Celkové hodnocení (6 hodnotící)

100%

Tvé hodnocení (nehodnoceno)

Pro hodnocení musíte být přihlášen(a)


Autor videa
avatar
Dominik Chládek


Obtížnost: SŠ



Komentáře

avatar

Adéla Potužníková
04. 09. 2020 - 06:26

Dobrý den, děkuji moc za video, jen bych měla menší otázku. Když negujeme výrok ,,Číslo 1,8 je záporné", neměli bychom dostat ,,Číslo 1,8 je buď kladné nebo nula."? Protože jinak by mohlo být kladné a nula zároveň. 

Napadlo mě, že věta s ,,buď" není negací, protože nezahrnuje všechny ostatní možnosti - tedy i tu, že číslo je zároveň kladné a zároveň nula. Výrok bez ,, buď" ale dle mého názoru není pravdivý, tedy by z negace nepravdivého výroku vyšel znovu výrok nepravdivý. Což mi také nedává smysl. 



Dominik Chládek

Dominik Chládek
04. 09. 2020 - 10:30

Tak jste si odpověděla, to jsem rád :) jinak moc děkuji za pochvalu a budu držet palce, ať Vám to jde od ruky :)



avatar

Adéla Potužníková
04. 09. 2020 - 07:58

Vlastně už jsem to pochopila. Chtělo to se ken trochu víc zamyslet. Každopádně děkuji moc za pěkné video. Výrokovou logiku teď budeme brát, tak budu mít snad předstih. 


avatar

daveprague
09. 01. 2020 - 00:31

Teda fuj.... Po tomhle jsem včela, zmatená ... Proto mám rád matematiku. 


upraveno: 09. 01. 2020 - 00:31

Dominik Chládek

Dominik Chládek
22. 10. 2016 - 16:58

No, negací existenčního kvantifikátoru je kvantifikátor obecný, jehož spojka je "Pro všechna..." a opak dané podmínky. Tedy správnou negací je "...nebo pro všechny jeho jeho úhly platí, že mají velikost větši nebo rovnu 30 stupňů" :)


avatar

Tomik95
21. 10. 2016 - 20:54

Rozumím, negací existenčního kvantifikátoru je všeobecný. Negace tedy je: Žádný z jeho uhlu není větší než 30 stupnu.

Dohromady tedy celá negace výroku: Trojúhelník není pravouhlý nebo žádný z jeho uhlu není větší než 30 stupnu.

Pochopil jsem správně Vaši napovědu?

Děkuji :-)


Dominik Chládek

Dominik Chládek
21. 10. 2016 - 17:14

Dobrý den, není vůbec za co :) zkusím jen poradit, kdyžtak Vám odpovím úplně na Vaše požádání :) zkuste si uvědomit, že výraz "alespoň jeden jeho úhel je větší nebo roven 30 stupňům" je vlastně výrok s existenčním kvantifikátorem, tedy "existuje alespoň jeden jeho úhel je větší nebo roven 30 stupňům". A co je negací existenčního kvantifikátoru? :) pokud nevíte, videa jsou v tomto kurzu níže :)


avatar

Tomik95
21. 10. 2016 - 11:13

Děkuji za vysvětlení a rychlou odpoved :-) Ještě jsem narazil na jeden příklad kde mi není jasná negace.

Je to tento výrok: Trojúhelník je pravouhlý a alespon jeden jeho úhel má velikost menší než 30 stupnu.

Při negaci tohoto výroku jsem postupoval takto: 1. negoval jsem to jako negaci konjunkce.

Tedy: Trojúhelník není pravouhlý nebo alespon jeden jeho úhel má velikost větší nebo rovno 30 stupnum.

Nebo: Trojúhelník není pravouhlý nebo žadnýho jeho úhel nemá velikost menší než 30.

Jsem z toho zmatený jak je tam to "alespon" v kombinaci se složeným vyrokem.

Děkuji za odpoved :)


Dominik Chládek

Dominik Chládek
20. 10. 2016 - 17:42

Dobrý den, ta je právě zahrnuta v tom prvním výroku :) pokud říkáme, že rovnice má nejvýše 2 dokřeny tak to znamená dva nebo méně :)


avatar

Tomik95
20. 10. 2016 - 13:20

Ahoj Dominiku, mám dotaz. U negací typu výroku: Rovnice x2 má nejvýše 2 kořeny. Němeli bychom do té negace zahrnout i tu situaci kdy má právě 2 kořeny? Tedy negace by byla: Rovnice x2 má právě 2 kořeny nebo alespon 3 kořeny.

Beru to tak, že může nastat i ta situace, kdy má rovnice právě dva kořeny, nebo je tato situace zahrnuta již v prvním výroku?

Děkuji za odpověd a za vysvětlení :-)


Dominik Chládek

Dominik Chládek
01. 10. 2016 - 22:18

Jsem rád, že se mi podařilo to vysvětlit :) děkuji že se díváte, moc si vážím pochvaly! :)


avatar

Aleszpasek
01. 10. 2016 - 13:12

Díky za vysvětlení :) Říkal jsem si proč je tam ta podmínka v trojúhelníku... A celkově děkuji za celé isibalo a velmi si cením vaší práce.


Přihlásit se pro komentář