Video řešené příklady

Derivace jako zobrazení

Obtížnost: VŠ | Délka řešení: 17 min

Mějte vektorový prostor funkcí \(V\) s bází \(\alpha = (u_1, u_2, u_3, u_4)\), kde \(u_i=x^{i-1}e^{3x}\). Určete matici lineárního zobrazení \(f\), pro které platí \(f:g \rightarrow 2g''-4g'-4g\), v bázi z \(\alpha\) do \(\alpha\).


Matice zobrazení z obrazů

Obtížnost: VŠ | Délka řešení: 6 min

Pokud existuje, nalezněte matici lineárního zobrazení (ve standarních bázích), které zobrazuje vektor \((1;2)\) na vektor \((3;-5)\) a vektor \((2;4)\) na vektor \((4;-3)\). Pokud neexistuje, vysvětlete proč.


Matice a předpis zobrazení

Obtížnost: VŠ | Délka řešení: 21 min

Mějme lineární zobrazení \(f:\mathbb{R}^3 \rightarrow \mathbb{R}^3\), pro které platí \(f(u_1)=v_1\)\(f(u_2)=v_2\) a \(f(u_3)=v_3\). Určete matici tohoto zobrazení ve standardních bázích a určete jeho předpis, kde:

\(u_1=(-2;3;-5)\)
\(u_2=(0;1;3)\)
\(u_3=(1;0;0)\)
\(v_1=(0;2;0)\)
\(v_2=(1;1;-1)\)
\(v_3=(2;-1;-2)\)


Všechny příklady (5)

Testy splněno na -%

Matice zobrazení

splněno - %

Obtížnost: VŠ | Délka řešení: 7 min

  • Definice -%
  • Příklad -%
  • Výpočet obrazu -%
  • Rozměry -%


Podrobnosti o látce

Celkové hodnocení (4 hodnotící)

100%

Tvé hodnocení (nehodnoceno)

Pro hodnocení musíte být přihlášen(a)


Autor videa
avatar
Dominik Chládek


Obtížnost: VŠ