Přechod k abstrakci: řešená cvičení


Funkční hodnoty

Střední škola • 5 min

U následujících funkcí určete hodnoty 

\(f(-1)\)\(f(0)\)\(f(1)\)\(f(4)-f(9)\)\(f(1)+f(a)\)

a) \(f:y=\dfrac1x\)

b) \(f:y=4x-7\)

c) \(f:y=\sqrt x\)

Funkční hodnoty obecně

Střední škola • 4 min

Máme funkci \(f(x)=3x+1\). Rozhodněte, zda existuje \(x \in \mathbb{R}\) tak, aby platilo:

a) \(f(x)=-8\)

b) \(f(x^2)=(f(x))^2\)

c) \(f(x+3)=f(x)+3\)

Obor hodnot

Střední škola • 5 min

Máme funkci \(f(x)=\dfrac{x^2+2}{x^2-2}\). Určete, jestli do oboru hodnot patří čísla \(0;-1;1;\dfrac12\).

Rovnost s funkcí

Střední škola • 5 min

Dokažte, že funkce \(f(x)=7^x\) vyhovuje rovnici:

\(f(x+2)-45f(x)=28f(x-1)\)

Funkční hodnoty obecně

Střední škola • 7 min

Pro následující předpisy nalezněte \(f(x)\), respektive \(g(x)\):

\(f(x-2)=x^2-7x+4\\ g\left(x-\dfrac2x\right)=x^2+\dfrac4{x^2}\)

Zpět na video