Definiční obory funkcí a jejich derivací: řešená cvičení


Definiční obor derivace

Vysoká škola • 4 min

Zderivujte funkci \(f(x)\) a určete \(D_f, D_{f'}\):

\(f(x)=\dfrac{\ln x^2}{4+x}\)

Definiční obor derivace

Vysoká škola • 5 min

Zderivujte funkci \(f(x)\) a určete \(D_f, D_{f'}\):

\(f(x)=\dfrac{x \sin x}{\cos x -1}\)

Definiční obor derivace

Vysoká škola • 4 min

Zderivujte funkci \(f(x)\) a určete \(D_f, D_{f'}\):

\(f(x)=\dfrac{\mathrm{arcsin}x}{x^2-1}\)

Definiční obor derivace

Vysoká škola • 8 min

Zderivujte funkci \(f(x)\) a určete \(D_f, D_{f'}\):

\(f(x)=x \sqrt{\cos \dfrac x2-1}\)

Definiční obor derivace

Vysoká škola • 13 min

Zderivujte funkci \(f(x)\) a určete \(D_f, D_{f'}\):

\(f(x)=\ln\mathrm{arctg}\dfrac{\cos x}{1-\sin x}\)

Definiční obor derivace

Vysoká škola • 4 min

Zderivujte funkci \(f(x)\) a určete \(D_f, D_{f'}\):

\(f(x)=\sqrt{x^2-ax}\;\;\;,a \in \mathbb{R}^+\)

Zpět na video